Enterprise Clojure Training

Timothy Pratley



Table of Contents

About
Overview
Duration
Learning Objectives
Prerequisites
Target Audience
Required setup
Pre-assessment
Required preparation
Optional reading
Introductions
The instructor
Clojure
Syntax Summary
1. The Clojure Ecosystem
1.1. Leiningen
1.2. The Read Eval Print Loop (REPL)
1.3. Editor setup
1.4. Exercises
1.5. Answers
2. Clojure Syntax
2.1. Primitive data types
2.2. Collections: lists, vectors, maps, and sets
2.3. Invoking functions
2.4. Defining vars
2.5. Binding names with let

2.6. Destructuring (also known as binding forms)

2.7. Namespaces
2.8. Regex
2.9. Exercises
2.10. Answers
3. Functions
3.1. Defining functions
3.2. Pre- and post-conditions
3.3. Anonymous functions
3.4. Function literals
3.5. Keyword and variadic arguments
3.6. Exercises

O© O© I J O O U1 U1 & W W DN DN DN NN DNDN R

NN NN N R B R R oRRm |l R, |, e,
B R W R RO O NN o R Www N o



3.7. Answers

Challenge 1: Corgi Cover eligibility

Part 1: eligibility
Part 2: silver, gold and platinum
Part 3: accept a map as an argument

Part 4: cross-reference policies

4. Testing with clojure.test

4.1. Defining tests with deftest

4.2. lein-test-refresh

4.3. Assert with is

4.4. Test fixtures

4.5. Using with-redefs for mocking behavior
4.6. Debugging

4.7. Workflow

4.8. Exercises

4.9. Answers

5. Control Flow

5.1. Conditionals: if, when, cond
5.2. Recursion

5.3. Loops

5.4. Exception handling

5.5. Comments

5.6. Exercises

5.7. Answers

6. Functional Programming

6.1. Pure functions and side effects

6.2. Apply and partial

6.3. Functions on sequences: map, reduce, and friends
6.4. Threading operators

6.5. Data structures are functions!

6.6. Exercises

6.7. Answers

Challenge 2: Processing files

Part 1: read a file
Part 2: create files
Part 3: validating with reasons

Part 4: working with file formats

7.Java Interop

7.1. Clojure syntax for Java constructors
7.2. Calling methods
7.3. reify

24
26
26
26
26
26
28
28
29
30
31
32
32
33
34
35
36
36
37
37
37
38
38
39
40
40
41
42
47
48
49
49
51
51
51
51
51
52
52
52
53



7.4. gen-class and proxy
7.5. Including Java classes in Clojure projects
8. Parallel Programming and Concurrency
8.1. Vars and dynamic scope
8.2. Delays, Futures, and Promises
8.2.1. Delays
8.2.2. Futures
8.2.3. Promises
8.3. Atoms, Refs, and Agents
Challenge 3: Mocking parallel web requests
Part 1: Mock a web request
Part 2: Report the how long it takes
Part 3: Make parallel requests
Part 4: Error handling
9. Polymorphism and Types
9.1. Multimethods
9.2. Protocols
9.3. Creating types with defrecord and deftype
9.3.1. Deftype
9.3.2. Defrecord
10. Interacting with a Database
10.1. Intro to clojure.java.jdbc
10.2. Inserting, updating and retrieving data
10.3. Solutions for SQL management
10.4. Exercises
10.5. Answers
Challenge 4: Corgi Cover Database
Part 1: Set up the schema
Part 2: Populate the data
Part 3: Write a spec
Part 4: Extending to Poodle Protection
11. Spec
11.1. Specifications
11.2. Validation
11.3. Conforming
11.4. Maps
11.5. A game of cards
11.6. Generators
11.7. Instrumentation and Testing
12. Macros

12.1. Expanding macros

53
53
54
54
35
35
56
57
57
39
39
59
39
39
60
60
61
63
63
63
65
65
66
67
67
67
69
69
69
69
69
70
70
70
71
72
74
75
76
80
80



12.2. Defining MacCroS . . . .. ..o 81

12.3. Syntax qUOTING . .. . ..o 81
12.4. Code as data. . ... ... o 83
12.5. EXEICISES . . . o oot 83
12.6. ANSWETS . . ..o 84

13. Furtherreading . . ... ... 85



About

Welcome to Enterprise Clojure Training. This course is for developers learning Clojure for the
purpose of building enterprise software. Some previous programming experience is necessary to
get the most out of this course.

Overview

Clojure is a general-purpose programming language that combines interactive development with a
robust infrastructure for multithreaded programming. Clojure is a dialect of Lisp that runs on the
JVM and provides direct access to Java libraries. Clojure is a functional programming language that
produces new values instead of changing objects. Clojure has been in the "adopt" category of the
Thoughtworks tech radar since 2014 because it enables teams to build better software faster.

This course is divided into 12 bite sized sections: the Clojure ecosystem; Clojure syntax; functions;
unit testing; control flow; functional programming; Java interop; concurrency; polymorphism;
interacting with a database; specifications; and macros.

Each section has exercises to put the information into practise and re-enforce learnings.

Duration

2days, 10 hr/day + 2 hour webinar after completion of workshop.

Learning Objectives

At the end of this course, you will be able to

» Write Clojure code
* Structure Clojure projects

* Interop with Java



» Interface with a database

* Use Clojure’s parallel programming and concurrency facilities

Prerequisites

General programming knowledge.

Target Audience

Developers and Senior Developers.

Required setup

The following software must be installed on your laptop prior to the course:

 Java (https://java.com)
* Leiningen (https://leiningen.org)
¢ Intelli] (https://www.jetbrains.com/idea)

* Cursive plugin for IntelliJ (https://cursive-ide.com)

Pre-assessment

* What programming languages have you used before?
* Do you have an interest in Clojure? If so what in particular interests you?
* What do you plan to do with Clojure?

* Name a scenario where you would use a HashMap data structure.

When should you use a Vector instead of a List or an Array?

Required preparation

Complete the first 10 exercises on the 4Clojure website (http://www.4clojure.com).

Optional reading

If you would like to get a head-start, please read the official Clojure introduction tutorial
(http://clojure-doc.org/articles/tutorials/introduction.html). This material will be covered as part of
the course. Having read it before hand will allow you to focus on working through the exercises of
the course.

Introductions


https://java.com
https://leiningen.org
https://www.jetbrains.com/idea
https://cursive-ide.com
http://www.4clojure.com
http://clojure-doc.org/articles/tutorials/introduction.html

The instructor

Timothy Pratley is the author of the book “Professional Clojure”, and a contributor to the Clojure
core language. He has 18 years of professional software development experience in banking,
robotics, logistics, and advertising. He spent the last 4 years exclusively using Clojure and
ClojureScript developing enterprise systems for Fortune 500 companies. He enjoys making YouTube
videos about Clojure, running, and reading books.

Please ask questions! I am here to help. Asking questions is the most valuable part of the course.

Clojure

During this course we will be examining the Clojure language up close. Sometimes a new language
can feel different just for difference sake. So why is it worth learning Clojure?

Clojure is simple and data-oriented. Smart people want to use it. Clojure enables teams to build
things fast. This makes it excellent for delivering value in enterprise development projects.



What language is it that meets all the criteria? What language would I
choose if I had to choose today? Probably Clojure!

— Robert Martin

Throughout the course there will be time to reflect on what purpose the differences serve and what

trade offs are being made. These are the Clojure language themes to watch out for as we move
through the course:

Data
e Literals
* Sequences
e Transformations
Functions
» Act on general purpose data structures
¢ Pure
A tool for thought
¢ Concise
e Unadorned
e Abstract
Getting stuff done

e Access to libraries

e Performance

Syntax Summary

Table 1. Everything is a list with the operation at the front.

Java Clojure
int i = 5; (def i 5)
if (x == 0) (if (zero? x)
return vy, y
else Z)
return z;
X *y*z; (*xyz)
foo(x, y, z); (foo x y z)
foo.bar(x); (.bar foo x)

Things that would be declarations, control structures, function calls, operators, are all just lists with
an op at front.



Chapter 1. The Clojure Ecosystem

Integrity is an ecosystem.

— Michael Leunig

There are many Clojure libraries. Hosted on Maven and Clojars. Just jars, like any other Java
artifact.

Clojure is itself a Java library. Clojure can make direct use of Java libraries. ClojureScript can make
direct use of JavaScript libraries.

The Clojure compiler is a Java library, a clojure.jar file. The only required installation is that Java
must be installed. Clojure is very simple to deploy due to the lack of dependencies.

You can use Java tooling to manage your project, but Clojure has some tools to make the process
easier.

Please follow along on your laptop and ask questions at any time.

1.1. Leiningen

A popular project built tool that provides a convenient way to pull libraries for your project. Follow
the installation instructions at (https://leiningen.org).

lein new training

cd training

tree

cat project.clj

cat src/training/core.clj

As you can see, Leiningen created a project with one dependency; Clojure itself.

lein repl


https://leiningen.org

1.2. The Read Eval Print Loop (REPL)

When you type in this code:
(+12)

Clojure evaluates it immediately and returns a result:
=S

Pressing the up arrow moves through your history.

The REPL is convenient for experimenting and doing informal tests. But the default REPL is not
ideal for editing code.

1.3. Editor setup

Most popular editors have plugins to send commands from the editor to a REPL, do syntax
highlighting and manage parenthesis. These are useful features, but I encourage you to prioritize
learning Clojure ahead of configuring and learning new editor key combinations. It is difficult to do
both at once!

For this course I recommend using Intelli] (https://www.jetbrains.com/idea) with the Cursive
Clojure plugin (https://cursive-ide.com). The main feature that sets Cursive apart is that it does error
highlighting in the editor itself (https://cursive-ide.com/userguide).

* Open the project we just created and launch a REPL.

* Click file —~ open and browse to the project.clj file in the directory.

In the file navigator, right click the project.clj file and select launch REPL.

Tools — REPL shows actions available

» Press control+shift+A to see all actions available.
* Press control+shift+T to send a form to the REPL.
* Set up a macro:

o [Make sure repl is running]

o sync, load, change namespace

Alternative: Lighttable (http://lighttable.com)

Click File - open folder.

* Browse to the “training” project directory that we created with lein.

Navigate to training/src/core.clj in the left hand tree view.

e Press control+enter to send a form to the REPL.


https://www.jetbrains.com/idea
https://cursive-ide.com
https://cursive-ide.com/userguide
http://lighttable.com

* Press control+space for a list of commands available.

* Note that println will show up in the bottom console, which is hidden to begin.
You can also open a REPL in your browser: (https://replit/languages/clojure).

For other editor options see (https://cb.codes/what-editor-ide-to-use-for-clojure).

1.4. Exercises

Evaluate some math expressions in the REPL:

e Find the sum of 2 and 3

e What is 31 times 79?

* Divide 10 by 2

* Divide 2 by 10
Create a new project called training. Open src/training/core.clj with your editor, write some
expressions, and send them to the REPL:

* Find the sum of 1, 2, and 3

e Evaluate the form: (println "hello world")

e Calculate 5 factorial

1.5. Answers

(* 31 79)
=> 2449

(/10 2)
=> 5

(/2 10)
=> 1/5


https://repl.it/languages/clojure
https://cb.codes/what-editor-ide-to-use-for-clojure

(println "hello world")
=> "hello world"
nil

(*54321)
=> 120



Chapter 2. Clojure Syntax

THESE ARE YOUR
FATHER'S PARENTHESES

FOR A MORE... CIVIUZED AGE.

If the syntax is good enough for the information, it should be good enough
for the meta-information.

— Erik Naggum

2.1. Primitive data types

Strings are enclosed in double quotes

"This is a string."

Character literals are preceded by a backslash

\a \b \c \newline \tab

Numbers can be Long

Double
3.14

BigInteger, suffixed with N

1000000000000N



BigDecimal, suffixed with M
1000000000000 . 1M
Expressed as exponents
1e3
Or ratio
2/5

Numbers are automatically promoted if they overflow during arithmetic.
Booleans are represented as true and false.

nil means nothing and is considered false in logical tests.

2.2. Collections: lists, vectors, maps, and sets

Lists are forms enclosed in parentheses.

()

Lists are evaluated as function calls.

(inc 1)
=)

The first element in the list is the function, and any following elements are arguments. Here we are
calling the inc function on 1, which will return 2.

Quote yields the unevaluated form.

(quote (1 2))
=> (1 2)

Apostrophe is a syntactic shortcut for quote.

"(12)
=> (quote (1 2))
=> (1 2)

10



Clojure has a sequence abstraction. Sequences can be lazy. Their values are only created as they are
consumed.

Lists and sequences are printed the same way.

(seq "(1 2 3))
=> (12 3)

Symbols are resolved.

inc
=> #fobject[clojure.core$inc]

foo
=> Exception: Unable to resolve symbol foo

To create an unresolved symbol, quote it

'foo
=> foo

Vectors are enclosed in square braces

[1234]

Vectors have order 1 lookup by index and count. Vectors are used in preference to lists for cases
where either could be used. Vectors do not require quoting and are visually distinct. You will rarely
see or use lists.

Clojure compares by identity and by value. A vector with elements matching a sequence is equal to
it.

(=[123] '(123))
=> true

Maps are key/value pairs

{"Language" "Clojure"
"Version" 1.5
"Author" "Rich Hickey"}

Maps have near constant time lookup by key. Maps are tuned to be fast. Maps are an excellent

11



replacement for object fields.

Keywords are shorthand identifiers that do not need to be declared. Keywords begin with a colon.
:language
Keywords are often used as keys in hashmaps; similar to fields in an object.

{:1anguage "Clojure"
:version 1.5
:author "Rich Hickey"}

Keywords can be namespaced.
:timothy.example/rect
Double colon is shorthand for a fully qualified keyword in the current namespace.

rirect
=> :timothy.example/rect

Sets are written as
#{1 2 3}

Sets have near constant time membership lookup, with a high branching factor.

Collections can be combined and nested

{[1 2] {:name "diamond" :type :treasure}
[3 4] {:name "dragon" :type :monster}}

This is a map that has vector coordinates as keys and maps as values.

2.3. Invoking functions

To call a function, wrap it in parenthesis:

(inc 1)
= 2

The first element in a list is a function to be called. The remaining elements are the arguments to

12



the function.

2.4. Defining vars

A var is used to store a mutable reference to a value. Vars are unbound if no value is supplied.

(def x)
X
=> #object[clojure.lang.Var$Unbound "Unbound: #'user/x"]

It is more common to supply an initial value.

(def x 1)
X
=> 1

Def created a var named x which is bound to the value 1. Vars are automatically dereferenced when
evaluated.

To represent values that changes over time, you can use an atom.

(def a (atom 1))
(swap! a inc)

©@a

=>%)

We defined a to be an atom with initial value 1, then swapped the atom’s value with the inc
function. We retrieved the value of the atom by dereference it with @. The current value of a is now
2, the increment of 1. @ is shorthand for deref.

(deref a)
=)

Atoms provide compare and set, which is suitable for non-transactional changes. Refs provide
transactional change, which is suitable for multi-threaded change management. Agents provide
update serialization as an alternative strategy for multi-threaded change.

Deref also blocks and gets the result of futures, promises and delays, which are operations that do
not block until dereferenced.

2.5. Binding names with let

Symbols:

* begin with an alphabet character

13



* can contain numbers and punctuation
 are usually lowercase words separated with hyphens

* must be bound to values before they can be evaluated

Symbols can be bound to a value in a scope with let.

(let [x 1]
(inc x))
=> 2

The symbol x is bound to the value 1, and the function inc is called on x, resulting in 2.

The binding scope is within the parentheses enclosing the let form, and will shadow any existing
bindings. It is preferable to use let instead of def for values that can be contained in a scope. Vars
can be changed, but you should almost never modify them directly. Instead Clojure provides local
bindings, atoms, refs and agents for managing change.

2.6. Destructuring (also known as binding forms)

(Let [[x y] [1 2]]
(+ x y))
=> 3

Destructuring is providing a literal data structure containing symbols that get bound to the
respective parts of a value with a matching structure. Where we might otherwise bind the vector [1
2] to a single symbol, here we destructure two symbols x and y by providing a pattern that matches
the vector.

(defn normalize
“Divide all dimensions by the sum of squares"
[[x yl]
(let [length (Math/sqrt (+ (* x x) (* y y)))]
[(/ x length) (/ y length)]))

Note that function arguments are already a destructured vector. The above case is an example of a
vector of arguments which contains a vector of x and y.

Without destructuring we would extract substructure manually:

(defn normalize [v]
(let [x (first v)
y (second v)
length (Math/sqrt (+ (* x x) (* y y)))]
[(/ x length) (/ y length)]))

14



Destructuring can be used in any binding. We can use destructuring in for comprehensions:

(defn invert [m]
(into {} (for [[k v] m]
[v k1))

In Clojure, for expressions are a convenient syntax alternative to map which also allows additional
constraints to be expressed.

(for [i (range 10)
:when (o0dd? i)]
(* 1 1))
=> (19 25 49 81)

There is no need to restrict normalize to use 2 dimensions, instead we can write a generic version:

(defn normalize
"“Divide all dimensions by the sum of squares"
[dims]
(let [squares (map * dims dims)
length (Math/sqrt (reduce + squares))
by-length #(/ % length)]
(map by-length dims)))
(normalize [3 4]) -> (0.6 0.8)
(normalize [3 4 5]) -> (0.424 0.566 0.707)

Variadic functions are destructured using & Variadic means variable number of arguments. Arity
means number of arguments.

(defn sub [& vs]

VS)
(sub 12 3 4)
=> (1234)

Which produces a vector. Apply expands the vector arguments. Most mathematical functions are
variadic:

(+123)
=> 6

Destructuring is nested, so you can use it to pull out sub-values without resorting to getter
functions.

15



Common opportunities for destructuring are:

Values in a map:

(:fieldl x)
(:field2 x)

{:keys [field1 field2]} x
Values in a sequence:

(first x)
(rest x)

[a & more]
Nested destructuring

(get-in x [:a :b])
{{b :b} :a}

2.7. Namespaces

Namespace forms occur at the start of files.

(ns training.core
(:require [clojure.string :as string])
(:import [java.util Date]))

(string/upper-case "shout")

The namespace must match the path and filename. The namespace training.core Must be defined in
the src/training/core.clj file. Filename hyphens are replaced with underscores, and dot
separators indicate directories.

The ns form allows us to require other namespaces and import java Classes. There are other valid
ns forms which are best to be avoided and so are not shown here. If you do see them in other code,
just know that you can and should achieve the same thing with the regular ns form described
previously.

16



Clojure programs are written in expressions which are evaluated to results. If an expression needs
to be compiled, it will be. Programs can be loaded from files or evaluated dynamically.

2.8. Regex

Regular expressions are written as #"pattern”

(re-seq #"\w+" "the quick brown fox")
:> (llthe" Ilqu_ickll "brOWﬂ" "fOX")

2.9. Exercises

Write code into a new file called src/training/syntax.clj, and send the lines to the REPL as you
enter them.

» Set up the new namespace called training.syntax

* Define a var called message bound to the string "greetings".

* Print out the value of the var message.

* Create a let binding that binds the symbol message to "well hello there", and prints out message
inside the let block.

» Print out message again, outside of the let block.

* Create a let binding that destructures the map {:greeting "good morning", :tone "happy"} and
prints the greeting and tone inside the let block.

* Destructure a single map input containing {:greeting "good morning", :tone "happy"} and
return a string combining greeting and tone. Use the str function.

2.10. Answers

(ns training.syntax)
=> nil

(def message "greetings")
=> #'hello-clojure/message

(prn message)
=> "greetings"
nil

Note the prn and println behave slightly differently; prn keeps the quotes around strings. This is
often useful when experimenting, because you can visually see the type of the values more clearly.

17



(let [message "well hello there"]
(prn message))

=> "well hello there"
nil

(prn message)
=> "greetings"

Note that the message global var is still the original value.

(def m {:greeting "good morning", :tone "happy"})

(let [{:keys [greeting tone]} m]
(prn greeting tone))
=> "good morning" "happy"

(defn hi [{:keys [greeting tone]}]
(str greeting " - " tone))

(hi m)
=> "good morning - happy"

18



Chapter 3. Functions

The chief function of the body is to carry the brain around.

— Thomas A. Edison

3.1. Defining functions

Functions are defined like this:

(defn square [x]

(* x x))

All functions return a result, the result of the last expression in the form. Defn binds the symbol
square to a var which refers to a function which returns the result of multiplying the input
parameter X by itself.

(square 2)
=>4

When evaluated, a list containing square in the first position causes the var bound to square to be
automatically dereferenced to the function, which is called on the arguments.

Mathematical operators are regular functions which must be written in prefix notation.

(+ (square 2) (square 3))
=> 13

Function arguments are evaluated from left to right before the function is called.

Unnamed functions are written as

19



(fn [a]

(inc a))

Unnamed functions are also called anonymous functions and Lambda expressions. There is a
special syntax for creating unnamed functions.

#(inc %)

Is a function which increments a single argument.

(#(inc %) 1)
= 2

Closures are functions that capture values from the environment.

(let [who "world"]
(defn greet []
(str "Hello " who))
(greet)
=> "Hello world"

Functions are values and can be passed as arguments to other functions. Functions that take a
function as an argument are called higher order functions.

(defn higher-order-function [f]
()

(higher-order-function greet)

=> "Hello world"

Map is function that calls a function on every element in a sequence

(map #(inc %) [1 2 3])
=> (2 3 4)

Map is a higher order function because the first argument is a function. Unnamed closures are
useful as arguments to higher order functions.

(let [x 5]
(map #(+ x %) [1 2 3]))
=> (6 7 8)

Here we have the symbol x bound to 5. We call the map function. Our first argument is an unnamed

20



function that captures x from the environment; a closure. The closure is called on every element of
the vector 1 2 3, resulting in a sequence 6 7 8. Higher order functions, closures, and unnamed
functions are terms that describe specific uses of functions that allow concise expressions.

3.2. Pre- and post-conditions

You can make assertions about inputs and outputs of a function. Place a map after the arguments
vector containing :pre and :post, which are a sequence of conditions which must hold true.

(defn f [x]
{:pre [(pos? x)]
:post [(neg? %) (int? %)]1}

(- x))
(f 1)
= -1
(f -1)

=> AssertionError Assert failed: (pos? x)

(f 1.5)
=> AssertionError Assert failed: (int? %)

In practise pre and post are rarely used. It is more common to check for a condition and throw an
exception:

(defn f [x]
(when-not (pos? x)
(throw (ex-info "bad input" {:x x}))
(let [result (- x)]
(if (and (neg? result) (int? result))
result
(throw (ex-info "bad result" {:x x})))

Or to use a schema or spec (which will be covered later in the course).

While pre and post are more concise, they suffer the following drawbacks: Syntax is easy to get
wrong, resulting in no assertion being made Assertions can be disabled Less control over error
description and handling

3.3. Anonymous functions

We usually define functions with defn, which creates a global var to hold our function. But

21



sometimes the function need not be globally available. We can specify functions without names like
so:

(fn [x]

(inc x))

But we would only do this if we wanted to make use of them in some way. The simplest way to use a
function is to call it immediately:

((fn [x]
(inc x)

1)

= 2

The function appears as the first thing in a list, so is called on the argument 1, and evaluates the
body of the function to calculate 2.

Another way to make use of an anonymous function is to bind it in a let form:

(let [f (fn [x]
(inc x))]

(f 2))
=5

In Clojure it is very common to pass a function as the argument to another function:

(map inc [1 2 3])
=> (2 3 4)

So having a way to specify an anonymous functions is helpful:

(map (fn [x]
(* x x))
[1234])
=> (149 16)

You can name a function without creating a global var:

(fn add-one [x]
(inc x))

Naming a function has several benefits:

* The name serves as a summary of the purpose of the function

22



* The name will appear in stacktraces, giving a searchable clue in your code
* The function can call itself

* The name will not be available outside the function

Note that

(defn f [x]
(inc x))

is shorthand for

(def f
(fn [x]
(inc x)))

3.4. Function literals

There is a special syntax for creating anonymous functions concisely:

#(inc %)
#(+ %1 %2)
#(apply + %&)

This allows the construction of very terse but powerful expressions:

(map #(* % %) [1 2 3 4])
=> (149 16)

I encourage you to use the (fn) form as much as possible instead of the #() form, it is not much more
typing and affords more opportunity to name parameters and functions in meaningful ways which
will describe your program better. For example:

(map (fn square [x]
(* x x))
[1234]
=> (149 16)

Is longer, but provides a semantic summary of the operation and a hint at the expected input
values.

23



3.5. Keyword and variadic arguments

(defn f [& args]

args)
(f123)
=> (12 3)
Variadic arguments can have disadvantages:
A * Causing callers to have to use apply

* Bypasses arity checking

An antipattern is

(defn f [x & [y]]
(ify
(+ xvy)
(inc x)))

Prefer instead

(defn f
([x] (inc x))
([x yl (+ x y)))

Clojure supports keyword arguments, but this style is discouraged because it prevents users from
passing a map of options. We cannot apply a map to a keyword argument function, so use a map
argument instead of keyword arguments.

3.6. Exercises

Create a new namespace called fun-functions. Define the following functions and call them with
some test input:
* A function that computes the square of an input number. What is the square of 55?

* A function that takes a number as input, ensures that the number is less than 100, and returns
the square of the square of the input.

* A function that takes two numbers as input, and returns a vector where the first element is the
second input, and the second element is the sum of the first and second input.

3.7. Answers

24



(defn square [x]
(* x x))

(square 55)

=> 3025

(defn square-of-square [x]
(if (< x 100)
(square (square x))
(throw (ex-info "Input too large" {:x x}))))
(square-of-square 2)
=> 16
(square-of-square 123)
=> ExceptionInfo Input too large

(defn fib-step [a b]
[b (+ab)]))

(fib-step 1 1)

=> [1 2]

(fib-step 1 2)

=> [2 3]

(fib-step 2 3)

=> [3 5]

25



Challenge 1: Corgi Cover eligibility

Insuricorp is about to launch a marketing campaign for a new “corgi cover” insurance policy. Only
certain people are eligible to register for “corgi cover”. To be eligible they must own a corgi and live
in either Illinois (IL), Washington (WA), New York (NY), or Colorado (CO). You are tasked with
building a system to validate applications for the policy.

Part 1: eligibility

Write a function that takes as input a state and corgi-count, and returns a boolean indicating the
person’s eligibility for the “corgi cover” policy.

Table 2. Test data

Name State Corgi count Existing policy count
Chloe IL 1 0

Ethan IL 4 2

Annabelle WY 19 0

Logan WA 2 1

See if =.

Part 2: silver, gold and platinum

A focus group of corgi owners has revealed that “corgi cover” needs to be offered at 3 different
tiers: “corgi cover silver”, “corgi cover gold”, and “corgi cover platinum”. Platinum is available
when covering 7 or more corgis OR covering at least 3 corgis and also having one other policy with
Insuricorp. Gold is available when covering at least 3 corgis. Silver is the original “corgi cover”
policy. Create a new function that takes an additional argument policy-count and returns a keyword
indicating their eligibility.

See cond.

Part 3: accept a map as an argument

The “corgi cover” applications Insuricorp collect contain more information than necessary to
determine eligibility. Create a new function that takes as input a single map data structure as input
instead of multiple inputs. It should pick out the values that it needs from the input map. Create
some test data and feed it to your function. The data should look something like:

{:name "Chloe", :state "IL", :corgi-count 1, :policy-count @}

Part 4: cross-reference policies

Insuricorp just merged with Megacorp. Platinum level corgi cover is now offered to people with an

26



existing Megacorp policy as well. Because the company is still restructuring, the policy-count input
still only contains Insuricorp data. But a new input has been made available to you which is a map
of people to policies.

{"Chloe" ["secure goldfish"]

"Ethan" ["cool cats cover" "megasafe"]}

Create a new function that takes as inputs two maps: the application, and the existing policies. It
should apply the same logic, but make use of the Megacorp data.

27



Chapter 4. Testing with clojure.test

The problem is not that testing is the bottleneck. The problem is that you
don’t know what’s in the bottle.

4.1. Defining tests with deftest

You can define a test in any file, but it is common to put all test code in a separate “test” directory,
and to create namespaces that mirror the “src” directory but have -test appended. So if we have a
source file src/my_namespace.clj then we create a test file as test/my_namespace_test.clj.

Test namespaces are normal Clojure namespaces. Test related functions come from the
clojure.test namespace, so it is common to refer all symbols from clojure.test for convenience:

(ns my-namespace-test
(:require [clojure.test :refer :all]))

A test is just a function that takes no arguments and will be called by the Clojure test runner.

(deftest my-test
(prn "My test ran"))

You can run the tests manually from the REPL:

(run-tests)

28



=> "My test ran"

Ran @ tests containing @ assertions.

@ failures, @ errors.

{:test 0, :pass 0, :fail @, :error @, :type :summary}

To run all tests in a project from the command line:

$ lein test

=> "My test ran"

Ran @ tests containing @ assertions.

@ failures, @ errors.

{:test 0, :pass 0, :fail @, :error @, :type :summary}

4.2. lein-test-refresh

Lein-test-refresh is a Leiningen plugin that reloads code and re-runs tests when you save a file.
https://github.com/jakemcc/lein-test-refresh.

Add lein-test-refresh to your ~/.1lein/profiles.clj. It should look similar to below.
{:user {:plugins [[com.jakemccrary/lein-test-refresh "0.22.0"]1]1}}
Alternatively you may add it to your project.clj.

(defproject sample
:dependencies [[org.clojure/clojure "1.8.0"]]
:profiles
{:dev
{:plugins [[com.jakemccrary/lein-test-refresh "0.22.0"]]}})

Now you can watch for changes from the command line:
$ lein test-refresh

If you change my-test now to print a new message, the tests are re-run as soon as you save the file...
giving immediate feedback on your change.

(deftest my-test
(prn "My test ran immediately"))

Seeing as saving the file executes code, you can use lein-test-refresh like a REPL.

29


https://github.com/jakemcc/lein-test-refresh

4.3. Assert with is

Let’s begin with a false assertion:

(deftest my-test
(is (=1 (inc 1))))

=> FAIL in (my-test)
expected: (= 1 (inc 1))
actual: (not (= 1 2))

And then convert it to a true assertion:

(deftest my-test
(is (= 2 (inc 1))))

=> Ran 1 tests containing 1 assertions.
0 failures, @ errors.

We have written a test that makes an assertion about the function inc. Most tests check for equality
with the expected value first, and the actual value second. The expected value is a literal expression
and the actual is a call to the function under test. However you are not limited to following this for
every test case. You can use any truthy assertion. Here is an example that does not do equality
checking:

(deftest my-test
(is (odd? 1)))

If your assertion expression is not self explanatory, supply an optional string argument which
describes the assertion:

(deftest my-test
(is (= (*55) (+ (*33) (*44)))
"The square of the hypotenuse is equal to the sum of the squares of the other two
sides"))

And to group assertions into logical blocks, use the testing form:

30



(deftest math-test
(testing "basic math"
(is (odd? 1))
(is (= 2 (inc 1))))
(testing "pythagoras"
(is (= (*55) (+ (*33) (*44)))
"The square of the hypotenuse is equal to the sum of the squares of the other two
sides"))

It is also possible to more concisely express multiple assertions using the are form:

(are [x y] (= xvy)
2 (+11)
4 (*22)

I recommend you avoid this form. It is easy to make an error in the syntax, and
A can be confusing. Furthermore line numbers are not preserved, so a failing test
case is harder to identify.

Occasionally we need to assert that an exception is thrown:

(defn bad [x]
(throw (ex-info "oh no" {})))

(deftest test-exception
(is (thrown-with-msg? Exception #"oh no"
(bad 42))))

4.4. Test fixtures

Test fixtures are for setting up and tearing down resources required by your tests. We can specify
:once fixtures that execute one time for all tests in the namespace, or :each fixtures that run around
each test in the namespace.

A fixture is simply a function that takes a test and executes it. Recall that tests are functions.
(use-fixtures :once
(fn print-enter-exit [tests]
(println "before")

(tests)
(println "after")))

Now the test runner will print out “before”, execute the tests in the namespace, and then print out

31



“after”.

(use-fixtures :each
(fn capture-prints [f]
(with-out-str (f))))

Here we prevent printing within our function from appearing in the console. Usually we want our
tests to make assertions, but not produce output. Otherwise the test report can be cluttered.

Another common use case is when doing database tests, we can wrap the test execution inside a
transaction and rollback after the test completes. This avoids cleaning up data after the tests run, as
no data was created.

4.5. Using with-redefs for mocking behavior

Often when we are writing tests we want to isolate particular behaviors. Some parts of a function
might not be appropriate to occur during the test. We can conveniently replace the definition of any
var during a test using with-redefs:

(defn post [url]
{:body (str "Hello world")})

(deftest test-post
(with-redefs [str (fn [& args]
"Goodbye world")]
(is (= {:body "Goodbye world"}
(post "http://service.com/greet")))))

At first glance this is very similar to let, but notice that a let would not work in this example. We
changed the behavior of the str function whose definition is outside the scope of the test. We
replaced it with an anonymous function that always returns “Goodbye world” regardless of its
inputs. Note that we could have used (constantly "Goodbye world") instead, which produces an
anonymous function just like the one we defined.

4.6. Debugging

While working on a function, sometimes it is useful to print out an intermediary value. One way to
accomplish this is using doto. Say that we were working on a complicated nested function:

(defn shazam [a b]
(/1 (+ab)(+a(*ahb))))

And we wanted to see what (+ a (* a b)) was evaluating to in the context of the function call. We
can temporarily wrap the expression in (doto -+ (prn)).

32



(defn shazam [a b]
(/1 (+ab) (doto (+ a (* a b)) (prn "***"))))

(shazam 1 2)

=> 3 NWkkese

1/9

The difference from wrapping with just prn is that prn always returns nil, while doto will cause the
prn side-effect to occur, but will return the original argument. This is also very useful when
interacting with Java, because you can construct an object, call various methods on it, and return
the object constructed.

(doto (new java.util.HashMap)
(.put "a" 1)
(.put "b" 2))

= {"3a" 1, "b" 2}

4.7. Workflow

To demonstrate these techniques in action let’s walk through the first 2 parts of Challenge 1 from
the manual.

See Challenge 1: Corgi Cover eligibility

lein new corgi-cover creates a new project. When we run the tests, one failure is shown. In order to
use testrefresh we first need to install the plugin. Global plugins are defined in
~/.lein/profiles.clj. I like to configure "changes only" because on large projects I will get more
focused output. lein test-refresh listens for source code changes.

I like to dock test refresh on the right hand side and open my editor on the left. I'll open the project
in Idea. I can see the code side by side with the test output. When I make changes to the code and
save, I see the results immediately. Changes in non-test namespaces also get reloaded. I don’t have a
REPL running, but I can still evaluate code immediately just by saving the file. Test refresh loads
source files as they change rather than relying on editor integration.

Let’s set up a function to check eligibility for a Corgi Cover insurance policy. The rule limits the set
of states available, and requires at least one corgi. The states are Illanois, Washington, New York
and Colorado. Pressing control-q shows docinfo on a function. Control-p shows the parameter
summary for a function.

Printing the result of an expression in global scope is a handy way to experiment. This is quite
useful because it replaces much of what I would otherwise do by sending forms to a REPL. I use prn
because it is easy to search for and remove later. Add something attention grabbing to highlight the
output in test refresh. Let’s play around with some input values and see that we get the expected
output. Once the function is doing what we want, we move this example into a test. Let’s make sure
that the test is effective by breaking it temporarily. Verifying that the test reports an error gives us

33



confidence that the test is working correctly.

Part 2 is about introducing platinum, gold, and silver tiers. The hint is to use cond to specify the
conditions and return the appropriate tier. Platinum requires a corgi count of 7 or more, or you
have 3 corgies and an existing policy. Note that the >= operator is used in prefix notation, which
may seem confusing. My rule of thumb is to look at the > arrow direction as indicating "getting
smaller". The arrow is pointing to the right, so values from left to right must get smaller.

Let’s introduce an error to the code. Test refresh detects the problem and will not run the tests until
we fix it. Now let’s see if we can get :platinum back from our function. If ineligible inputs are given
we should return nil. We can use a shared definition of the eligible states, or call the eligible?
function from part 1.

The REPL is fantastic at answering questions, and we can do the same thing using test refresh. To
confirm how when behaves we can experiment. We can now confidently wrap our cond in when
eligible?. Let’s add the logic for gold. Silver applies to any other eligible application.

When debugging we might be interested in what the eligibility check is returning. We can wrap that
form in a doto prn to spy on the intermediary result. Prepending a label helps me identify the
output in the test refresh window. In some ways this is similar to creating a breakpoint. This
approach is convenient because we don’t need to restart anything manually. The working example
is reloading as we make adjustments.

We can capture more requirements in separate assertions.

You can alternatively use a more REPL based approach. Let’s start up a REPL in Idea. There is an
action to run the tests in the current namespace. It highlights failures in the editor. We need to
switch between the test and implementation namespace quite often. There is an action to assist
with this called goto test.

When working from a REPL it is convenient to create a commented form. The commented form can
be sent to the REPL for evaluation. But if we forget to re-evaluate the function that the comment
calls in the REPL, then any changes will not be active in the environment yet. I find it a little
distracting to think about what needs to be evaluated. Delegating this responsibility to test refresh
frees up my attention to focus on the code.

* paredit etc

4.8. ExXercises

» Start lein-test-refresh running in your existing project directory.
* Create a new namespace in the “test” directory called training.core-test
» Write a function called pythag that returns the square root of the sum of squares for two inputs.

* Write a test containing an assertion that exercises your function. Expect 5 when passing 4 and 3
as arguments.

» Write another test case with different inputs.

* Introduce a bug into pythag to make sure your tests discover the problem.

34



» Fix pythag so that all tests pass.

* Copy the test test-post from the "with-redefs" section and modify it so that it counts how many
times str gets called. Call post several times and make an assertion about how many times str
should get called.

4.9. Answers

(defn pythag [a b]
(Math/sqrt (+ (* a a) (* b b))))

(deftest test-pythag
(is (= 5 (pythag 4 3)))
(is (= 13 (pythag 12 5))))

(defn post [url]
{:body (str "Hello world")})

(deftest test-post
(let [c (atom 0)]
(with-redefs [str (fn [& args]
(swap! c inc)
"Goodbye world")]
(post "http://service.com/greet")
(post "http://service.com/greet")
(post "http://service.com/greet")

(is (= 3 6¢)))))

35



Chapter 5. Control Flow

Control your own destiny or someone else will.

— Jack Welch

Clojure provides special forms for control flow. Special forms are built in primitives that behave
differently from functions. We already saw several special forms in action: def, let, quote and fn are
all special forms. The main thing that is different about them is that they don’t evaluate all their
arguments like a regular function call.

5.1. Conditionals: if, when, cond

Another special form is if which chooses between two options.

(if (pos? 1)
(println "one 1is positive")
(println "or is it?"))

=> "one is positive"

Only one branch is evaluated, whereas a function call evaluates all arguments.

Often we want to execute some code only when a condition is met:

(when (pos? 1)

(println "one is positive")

(println "multiple expressions allowed"))
=> "one is positive"

"multiple expressions allowed"

When the test fails, nothing is evaluated, when it passes, everything in the body is evaluated.

Cond allows for multiple branches.

36



(def x {:cake 1})

(cond (= x 1) "one"
(= x :cake) "the cake is a lie"
(map? x) "it's a map!"
telse "not sure what it is")

=> "it's a map!"

Note that :else is not a special keyword, it just happens to be a truthy value.

5.2. Recursion

Functions that call themselves are called recursive. Here is an example of recursion:

(defn sum-up [coll result]
(if (empty? coll)
result
(sum-up (rest coll) (+ result (first coll)))))

In Clojure there is a special way to do recursion which avoids consuming the stack:

(defn sum-up-with-recur [coll result]
(if (empty? coll)
result
(recur (rest coll) (+ result (first coll)))))

Recur can only occur at the last position of a function (Where scope can be discarded).

5.3. Loops

Loop establishes bindings, and allows you to recur back to the start of the loop with new values.

(loop [a @
b 1]
(if (< b 1000)
(recur b (+ a b))

a))
=> fib number below 1000

5.4. Exception handling

You can work with exceptions using try catch finally and throw.

37



(try
(inc "cat")
(catch Exception e
(println "cat cannot be incremented")))

5.5. Comments

Anything following a semicolon is a comment

; this is an inline comment
;2 this is a function level comment

Less common is the comment form:
(comment anything)

And a special form for complete removal of any form it is prefixed to
# (this form is removed)

Which is handy for temporarily removing a form when modifying code. You can use hash-
underscore multiple times to comment out multiple forms.

#_#_ ignored-1 ignored-2

I call this the bug eyes operator, because it looks like a bug emoji.

Commas are optional and treated as whitespace.

(=9{:a1, :b2, :c3}{:a1:b2:c3}

5.6. Exercises

* Create a function that given a test score between 0 and 100 returns a grade A B C D or F for fail.

* Write a function that takes a number and uses a loop to calculate the factorial of that number.
Factorial 5 is 1*2*3*4*5.

* Write a new version of factorial that does not use a loop but recursively calls itself.

» Write a loop for the Fibonacci sequence (1 1 2 3 5 8 13) that finds the maximum Fibonacci
number less than 100. The sequence is defined by n2 = n1 + n0.

38



5.7. Answers

(def grade [score]
(cond (>= score 90) "A"
(>= score 80) "B"
(>= score 70) "C"
(>= score 60) "D"

telse "F"))

(defn factorial [n]
(Loop [acc 1
X n]
(if (<= x 1)
acc
(recur (* acc x) (dec x)))))
(deftest factorial-test
(is (= 120 (factorial 5))))

(defn factorial2
([n] (factorial 1 n))
([acc n]
(if (<= n 1)
acc
(recur (* acc n) (dec n)))))
(deftest factorial2-test
(is (= 120 (factorial2 5))))

(defn fib [limit]
(Loop [a 1
b 1]
(if (>= b limit)
a
(recur b (+ a b)))))
(deftest fib-test
(is (= 89 (fib 100))))

39



Chapter 6. Functional Programming

If you don’t love something, it’s not functional, in my opinion.

6.1. Pure functions and side effects

You have probably noticed that Clojure functions always return a value. Moreover they usually
return a useful result, not just a nil. There is a distinction to be made between functions which
produce useful result values from functions which cause side-effects.

Functions that produces side effects are often called in a way that discards their result. For example
calling (println "hi") is done not because we want a result. println returns nil, which is useless.
What we want is to print to System out the string "hi", which occurs as a side-effect of us calling the
function. Contrast that with calling (str "hi" "there"), which returns a new string "hithere"; no
side-effects occur.

A function with no side-effects is a pure function. Calling pure functions with a given input always
results with the same corresponding output. Note that rand is not a pure function even though it
returns a useful result, because it produces a different output every time.

Pure functions are desirable because they are:

* easier to reason about
e easier to combine

e easier to test

* easier to debug

* easier to parallelize

The Clojure api provides many pure functions. For example conj does not add something to a
vector, it returns a completely new vector!

40



(def v [1 2])
(conj v 3)
=> [1 2 3]

v
=> [1 2]

In this example we can see that v remained unchanged. Clojure implements data structures that
enable this to happen efficiently. Using a regular Java vector would require duplicating the vector,
but Clojure makes use of a technique called shared structure to provide immutable data structures
that don’t require the entire object to be duplicated.

Clojure does allow side-effects, indeed they are very useful. It is good style to keep side-effects co-
located instead of having them occur throughout various parts of the code. We will see some good
examples of this philosophy in action later in the course when we get to atoms. We can use pure
function to calculate the next value to be assigned to an atom given the current value. The logic is
separate from the side effect.

6.2. Apply and partial

If you have 4 numbers and want the max, you can call

(max 1 25 3)
=> 5

But what if you have a sequence of many numbers? What if you don’t know how many numbers
there will be? Fortunately there is a way to convert a sequence of arguments into a function call:

(apply max [1 2 5 3])
=> 5

This is especially useful when calling variadic functions like max. Note that we could have
alternatively reduced over the sequence, but apply is much more concise and clear about the
intent.

In Clojure we often pass functions as values, so there is a convenient way to create a function that
consumes some arguments that can be used with additional arguments later:

(partial + 1)

Creates a function that adds 1 to any number of arguments supplied. It returns a function that is
equivalent to:

41



(fn [& args]
(apply + 1 args))

So let’s see how we might make use of that:

((partial + 1) 2 3)
=> 6

(map (partial / 1) (range 1 5))
=> (11/2 1/3 1/4)

In the previous example, we could have instead written:

(map #(/ 1 %) (range 1 5))
=> (11/2 1/3 1/4)

6.3. Functions on sequences: map, reduce, and friends
To really embrace Clojure is to think in terms of sequences and data structures.

The most basic way to construct a sequence is like so:

(cons 1 ())
=> (1)

(cons 3 (cons 2 (cons 1 ())))
=>(321)

But Clojure provides several easier ways to create a sequence:

(range 10)
=>(0123456789)

Be careful though, Clojure can produce infinite sequences (don’t do this in a REPL):

(range)

This would attempt to keep producing numbers forever. (Press control-c to cancel the REPL if you
did try this). There is a way to limit the amount of values to take:

42



(take 5 (range))
=> (01234)

(take 5 (drop 5 (range)))
=>(567809)

Clojure has an excellent sequence abstraction that fits naturally into the language. From a vector [1
2 3 4] we can find the odd numbers by calling the filter function:

(filter odd? [1 2 3 4])
=> (1 3)

Here we called the filter function with two arguments: the odd? function and a vector of integers.
filter is a higher order function, since it takes an input function to use in its computation. The
result is a sequence of odd values. Functions like filter that operate on sequences call seq on their
arguments to convert collections to sequences. The underlying mechanism is the ISeq interface,
which allows many collection data structures to provide access to their elements.

map is a function that applies another function for every element in a sequence:

(map inc [1 2 3 4])
=> (23405)

The result is a sequence of the increment of each numberin [1 2 3 4].

Sequences can be used as input arguments to other functions as shown here:

(filter odd? (map inc [1 2 3 4]))
=> (3 5)

Here we filtered by odd? the values from (2 3 4 5), which was the result of calling map.

To aggregate across a sequence, use reduce:

(reduce * [1 2 3 4])
=> 24

For each element in the sequence, reduce computes (* aggregate element) and passes the result of
that as the aggregate for the next calculation. The first element 1 is used as the initial value of
aggregate. The final resultis 1 *2 * 3 * 4.

Clojure provides a built-in function for grouped aggregates:

43



(group-by count ["the" "quick" "brown" "fox"])
=> {3 ["the" "fox"], 5 ["quick" "brown"]}

3 letter words are "the" and "fox", whereas 5 letter words are "quick" and "brown".
filter is like a Java loop:
for (i=0; i < vector.length; i++)

if (condition)
result.append(vector[i]);

map is like a Java loop:

for (i=0; i < vector.length; i++)
result[i] = func(vector[i]);

reduce is like a Java loop:

for (i=0; i < vector.length; i++)
result = func(result, vector[i]);

Sequence abstractions are like names for loops that you can add to your vocabulary to talk about
and recognize different kinds of loops. Learning the names of the abstractions and patterns that
replace loops is an effort, but it adds powerful words to a programmer’s vocabulary. A large
vocabulary facilitates reasoning more succinctly, communicating more effectively, and writing less
code that does more.

Clojure provides a special form #() to create an anonymous function:

#(< % 3)

The % symbol is an implied input argument. This function takes one argument and returns true if
the input argument is less than 3, otherwise it is false. Anonymous functions are handy for adding
small snippets of logic:

(filter #(< % 3) [1 2 3 4 5]))
=> (01 2)

This keeps only numbers less than 3. Now let’s create a sequence of odd/even labels for each
number in the vector:

44



(map #(if (odd? %) "odd" "even") [1 2 3 4 5])
:> (llodd" "evenll llodd" "eVen" "Odd")

Sequence abstractions are more concise and descriptive than loops, especially when filtering
multiple conditions, or performing multiple operations.

Clojure also has useful functions for constructing sequences:

(range 5)
=> (01234

(repeat 3 1)
= (111)

(partition 3 (range 9))
=> ((012)(345) (67 8))

One situation that appears difficult to use a sequence abstraction in is when we have a vector of
numbers and wish to perform a sequence operation that relies upon the previous value visited. For
example, think about finding the sum of each pairin [1 2 3 4 5]. Using an imperative style loop we
can peek into the vector at the previous value:

for (i=1; i < v.length; i++)
print v[i] + v[i-1];
=>3579

Can we represent this as a sequence? Yes! Imagine two identical sequences offset slightly:

The overlapping values are the pairs we want.

map can take multiple sequences from which to pull arguments for the input function:

(map + [1 3]
[2 4])
=> (37)

Here 1 adds to 2 to make 3, and 3 adds to 4 to make 7.

rest is a function which returns the input sequence without its first element:

45



(def v [1 2 3 4 5])
(rest v)
=> (23 45)

Putting them together:

(map + v (rest v))
=> (35709)

We called map on the addition function over both input sequences:

v =>(12345)
(rest v) => (2 3 45)

The input sequences were of different lengths, so map stopped when the smallest sequence was
exhausted. The result was a new sequence of the pairwise sums:

(3579)

Why are sequence abstractions better than loops? When reading a loop you must comprehend the
entire block of code to know what it does. As the loop body grows and changes you must mentally
keep track of more complexity. Mistakes like “off by one” are hard to spot, and can creep in as the
code changes. Testing requires the invasion of the loop with breakpoints. You may find yourself
duplicating a loop to customize some similar operation. The loop abstraction is very easy to
understand and use, but it does not provide leverage.

Imagine discovering a new requirement where you need to multiply all of those numbers together.

The change is invasive to the imperative loop:

result = 1;

for (i=1; i < v.length; i++)
result *= (v[i] + v[i-1]);

=> 945

The change occurs inside the loop with the addition and multiplication intertwined.

Contrast this with modifying the Clojure sequence. We compose a reduce with the original map
expression:

(reduce * (map + v (rest v)))
=> 945

* reduce: Aggregate by multiplication the sequence

46



* map: adding items together from two sequences

* pairing: the sequence of elements in v, adjacent to the rest of v
This is dense, but descriptive code... if you know the vocabulary.

With a sequence you can write unit tests for the component sequences and operations, reuse the
same sequence without writing new code, and reason about the transformations as composable
parts.

Look out for opportunities to name your steps by identifying long expressions and creating a
named function out of them.

Clojure exposes a sequence interface over data collections to a rich set of functions that compose
well. Three important functional sequence concepts are: filter, which retains each item in a
sequence where some function evaluates to be truthy; map, which selects new values by calling a
function over input sequence(s) to create a new sequence; and reduce, which aggregates a sequence
and returns a single value.

I invite you to take the “no loops” challenge. The next time you spot a loop stop and think about
what sequence operation the loop represents. Think about how to rewrite the loop as sequence
operations instead. It will take time and mental effort, but you will be rewarded with a deeper
understanding of the problem being solved. Whenever you see a loop, think about how it could be
expressed as a sequence. Sequences are loop abstractions that allow you to ignore the
implementation details.

6.4. Threading operators

By now, you should be feeling the combinatorial power functions offer. Simple functions compose
sequence operations together to build transforms. Clojure has almost one hundred functions
related to sequences, so you should also be feeling wary of such dense code. If we keep adding
layers of function calls, the code becomes cryptic:

(reduce * (filter odd? (map inc v)))
=> 15

With three layers of function calls, things are getting hard to keep in our head all at once. This
expression may be easier to mentally process by starting from the innermost map, working out to
filter, and then out to reduce last. But that is the opposite of our reading direction and locating the
true starting point is difficult.

The presentation of sequence operations is clearer if you name intermediary results:
(let [incs (map inc v)
odd-incs (filter odd? incs)]

(reduce * odd-incs))
=> 15

47



Or use a thread last:

(->> v
(map 1inc)
(filter odd?)
(reduce *))
=> 15

Threading is good for unwrapping deeply nested function calls, or avoiding naming intermediary
steps that don’t have a natural name.

Thread first is similar, but passes the value in the first position

(-> 42 (/ 2) (inc))
=> 22

Note that for empty expressions, the parenthesis are optional.

(-> 42 (/ 2) inc)
=> 22

6.5. Data structures are functions!

Maps sets vectors and keywords are functions. They delegate to get. While it is possible to use get to
access collections, calling the collection directly is more common.

(get {:a 1 :b 2} :a3)

=> 1
({:a 1 :b 2} :3)
=> 1
(:a {:a1:b 2}
=> 1

This is useful because you don’t need to create a function to call get.

(map (fn [m] (get m :a)) [{:a 1} {:a 2} {:a 3}])
= (12 3)

Can instead be written as:

48



(map :a [{:a 1} {:a 2} {:a 3}])
= (12 3)

Where we are looking up the value associated with :a for each element in a vector of maps.

Sets implement get:

(get #{1 2 3} 2)
= 2

(#{1 2 3} 2)
= 2

(remove #{nil "bad"} [:a nil :b "bad" "good"])
And so do vectors:

(get [1 2 3] 0)
=> 1

([123]0)
=> 1

6.6. Exercises
* Write a function that takes two inputs, and returns the sum of the numbers in a range between
two input integers, including the two input numbers.
* Write a function that produces a sequence of powers of 2: (1248 16 ...)
» Write a function that takes a string and produces a sequence of characters with no vowels.
* Write a function that produces a sequence: (1% ...
* Write a function that produces a sequence: (1%2% ...)

* Write a function that produces the Fibonacci sequence (11235813 21)

6.7. Answers

49



50

(defn sum-between [a b]

(apply + (range a (inc b))))
(sum-between 3 5)
=> 12

(defn powers-of [n]

(iterate #(* % n) 1))
(take 5 (powers-of 2))
=> (12 4 8 16)

(defn shorten [s]

(remove #{\a \e \i \o \u} s))
(apply str (shorten "Clojure sets are functions"))
=> "Cljr sts r fnctns"

(defn fractions []

(map / (repeat 1) (rest (range))))
(take 5 (fractions))
= (11/2 1/3 1/4 1/5)

(defn fraction-powers [n]

(map / (repeat 1) (powers-of n)))
(take 5 (fraction-powers 2))
= (11/2 1/4 1/8 1/16)

(defn fib-step [[a b]]
[b (+ab)])
(defn fib-seq []
(map first (iterate fib-step [1 1])))
(take 10 (fib-seq))
=> (112358132134 55)



Challenge 2: Processing files

Insuricorp branches collect applications for the “corgi cover” policy and periodically send them to
headquarters in a large comma separated text file. You have been tasked with processing the files
using the validation logic you built earlier.

Part 1: read a file

Create a function that opens a file called corgi-cover-applications.csv and converts every row into a
data structure and prints it. Next use that data structure as an input to your validation function and
print the result. See slurp line-seq clojure.string/split.

Part 2: create files

The downstream Insuricorp systems will only be operating on corgi cover applications that pass
your eligibility check. But the invalid corgi cover applications need to be sent back to the branches
so that they can follow up with the customers on why they are not eligible. Create a new function
that opens two output files and writes to them based upon your eligibility check. The files should be
called eligible-corgi-cover-applications.csv and ineligible-corgi-cover-applications.csv.

Part 3: validating with reasons

A request has come in from several Insuricorp branches that if a person is ineligible for corgi cover,
a short reason be supplied. That way the sales reps don’t have to spend time figuring out what they
need to tell the customer. Create a new validation function that instead of returning a boolean,
returns nil if no problems are found, or returns a string with the reason if a problem is found.
Create a new processing function that splits the applications into two files based on the new
validator.

Part 4: working with file formats

As part of the Megacorp merger, the downstream systems are converting to JSON format. Create a
new function that writes JSON data to an eligible-corgi-cover-applications.json file.

51



Chapter 7. Java Interop
— |

-

Sitting in my favorite coffeehouse with a new notebook and a hot cup of
java is my idea of Heaven.

— Libba Bray

7.1. Clojure syntax for Java constructors

Constructing a Java object is done by appending a period to the class identifier:

(ns training.core
(:import [java.util Date]))

(Date.)
(Date. 2018 02 17)

Which is equivalent to the less used variant:

(new Date)
(new Date 2018 02 17)

7.2. Calling methods

Calling a method on a Java object done by prepending a leading period:

(.length "hello world")
(.isDirectory (java.io.File. "my-dir"))

Which is equivalent to the less used variant:

(. "hello world" length)
(. (java.io.File. "my-dir") isDirectory)

52



Java static method calls are accessed by slash:

(Math/pow 1 2)
(.print System/out "hi")

Inner classes can be accessed using the dollar symbol:

java.nio.channels.FileChannel$MapMode/READ_ONLY

7.3. reify

reify creates an object that conforms to an interface:

(.listFiles (java.io.File. ".")
(reify
java.io.FileFilter
(accept [this f]
(.isDirectory f))))

Notice that we didn’t define a class? We directly created an object that conforms to the FileFilter
interface. reify is a convenient way to provide a concrete implementation of an interface.

7.4. gen-class and proxy

gen-class creates a class. In practice the need to create a class from within Clojure is rare, so we
won’t be covering the syntax. (see https://kotka.de/blog/2010/02/gen-
class_how_it_ works_and_how_to_use_it.html if you want to explore this further)

proxy can be used to extend a concrete superclass. Again the need for this is rare. (see
https://kotka.de/blog/2010/03/proxy_gen-class_little_brother.html if you want to explore this further)

7.5. Including Java classes in Clojure projects

You can define Java classes in Java in a separate directory and add
:java-source-paths ["src/java"]

To your project.clj file (See https://github.com/technomancy/leiningen/blob/master/doc/
MIXED_PROJECTS.md for more other options.)

53


https://kotka.de/blog/2010/02/gen-class_how_it_works_and_how_to_use_it.html
https://kotka.de/blog/2010/02/gen-class_how_it_works_and_how_to_use_it.html
https://kotka.de/blog/2010/03/proxy_gen-class_little_brother.html
https://github.com/technomancy/leiningen/blob/master/doc/MIXED_PROJECTS.md
https://github.com/technomancy/leiningen/blob/master/doc/MIXED_PROJECTS.md

Chapter 8. Parallel Programming and
Concurrency

Our moral traditions developed concurrently with our reason, not as its
product.

— Friedrich August von Hayek

8.1. Vars and dynamic scope

Vars are automatically derefed when evaluated, so it can seem like they are just a variable. But you
can “see” the var itself using the var function or #' shorthand.

(def one-hundred 100)
=> #'training.core-test/one-hundred

(var one-hundred)
=> #'training.core-test/one-hundred

(deref #'one-hundred)
=> 100

The most common reason you would want to do that is to examine the metadata of a var:

(meta #'one-hundred)
=> {:line 73, :column 1, ...}

Metadata may be provided using "{}
(def x M:private true} 1)

You can attach whatever metadata you wish. These are the keys the compiler looks for:

54



:private
:doc
:author
1type

By default Vars are static. But Vars can be marked as dynamic to allow per-thread bindings. Within
each thread they obey a stack discipline:

(def A:dynamic x 1)
(def N:dynamic y 1)
(+ xy)

=> 2

(binding [x 2 y 3]
(+ xy))

= 5

(+ xy)
=> 2

Bindings created with binding cannot be seen by any other thread. Likewise, bindings created with
binding can be assigned to, which provides a means for a nested context to communicate with code
before it on the call stack. This capability is opt-in only by setting a metadata tag: dynamic to true as
in the code block above.

Functions defined with defn are stored in Vars, allowing for the re-definition of functions in a
running program. This also enables many of the possibilities of aspect- or context-oriented
programming. For instance, you could wrap a function with logging behavior only in certain call
contexts or threads.

8.2. Delays, Futures, and Promises

8.2.1. Delays

Delays wrap an arbitrary body of code for evaluation at a later stage so that the code in question is
not run unless the answer is asked for. Delays also cache the result value to prevent another
execution. The body code will only run once, even if dereferenced concurrently.

(def d (delay (println "Hello world!") 42))

d
=> H#object[clojure.lang.Delay {:status :pending, :val nil}]

55



(realized? d)
=> false

@d
=> Hello world!
4?2

@d

(realized? d)
=> true

We assign the delay to a var called d. We see that it starts in a pending state. Dereferencing d with @
causes the code to run, printing "Hello world!" and returning 42. Notice that the second
dereference with @ does not print "Hello world!" again, it only returns the already realized value of
4).

8.2.2. Futures

Futures provide an easy way to spin off a new thread to do some computation or I/O that you will
need access to in the future. The call style is compatible with delay. The difference is that the work
begins immediately on another thread. The flow of control is not blocked. If you dereference a
future, it will block until the value is available:

(def f
(future (Thread/sleep 10000) 42))

.f
=> #object[clojure.core$future_call {:status :pending, :val nil}]

(realized? f)
=> false

--- 10 seconds pass -

(realized? f)
=> true

56



ef
=> 42

.f
#object[clojure.core$future_call {:status :ready, :val 42}]

8.2.3. Promises

Promises are used in a similar way to delay or future in that you dereference them for a value, can
check if they have a value with realized? and they block when you dereference them if they don’t
have a value until they do. Where they differ is that you don’t immediately give them a value, but
provide them with one by calling deliver:

(def p (promise))
(realized? p)
=> false

(deliver p "as-promised")
(realized? p)
=> true

@p
=> "as-promised"

Dereferencing works on futures, delays, promises, atoms, agents refs and vars.

8.3. Atoms, Refs, and Agents

Atoms provide a way to manage shared, synchronous, independent state. They are a reference type
like refs and vars. You create an atom with atom, and can access its state with deref/@. Like refs and
agents, atoms support validators. To change the value of an atom, you can use swap!. A lower-level
compare-and-set! is also provided. Changes to atoms are always free of race conditions.

As with all reference types, the intended use of atom is to hold one of Clojure’s immutable data
structures. And, similar to ref’s alter and agent’s send, you change the value by applying a function
to the old value. This is done in an atomic manner by swap! Internally, swap! reads the current
value, applies the function to it, and attempts to compare-and-set! it in. Since another thread may
have changed the value in the intervening time, it may have to retry, and does so in a spin loop. The
net effect is that the value will always be the result of the application of the supplied function to a
current value, atomically. However, because the function might be called multiple times, it must be
free of side effects.

Atoms are an efficient way to represent some state that will never need to be coordinated with any

57



other, and for which you wish to make synchronous changes (unlike agents, which are similarly
independent but asynchronous).

While Vars ensure safe use of mutable storage locations via thread isolation, transactional
references (Refs) ensure safe shared use of mutable storage locations via a software transactional
memory (STM) system. Refs are bound to a single storage location for their lifetime, and only allow
mutation of that location to occur within a transaction. In practise Refs are rarely used.

Like Refs, Agents provide shared access to mutable state. Where Refs support coordinated,
synchronous change of multiple locations, Agents provide independent, asynchronous change of
individual locations. Agents are bound to a single storage location for their lifetime, and only allow
mutation of that location (to a new state) to occur as a result of an action. Actions are functions
(with, optionally, additional arguments) that are asynchronously applied to an Agent’s state and
whose return value becomes the Agent’s new state. Because actions are functions they can also be
multimethods and therefore actions are potentially polymorphic. Also, because the set of functions
is open, the set of actions supported by an Agent is also open, a sharp contrast to pattern matching
message handling loops provided by some other languages.

Clojure’s Agents are reactive, not autonomous - there is no imperative message loop and no
blocking receive. The state of an Agent should be itself immutable (preferably an instance of one of
Clojure’s persistent collections), and the state of an Agent is always immediately available for
reading by any thread (using the deref function or reader macro @) without any messages, i.e.
observation does not require cooperation or coordination.

Agent action dispatches take the form (send agent fn args*). send (and send-off) always returns
immediately. At some point later, in another thread, the following will happen:

* The given fn will be applied to the state of the Agent and the args, if any were supplied. The
return value of the given fn will become the new state of the Agent.

 If any watchers were added to the Agent, they will be called. See add-watch for details.

¢ If during the function execution any other dispatches are made (directly or indirectly), they will
be held until after the state of the Agent has been changed.

 If any exceptions are thrown by an action function, no nested dispatches will occur, and the
exception will be cached in the Agent itself. When an Agent has errors cached, any subsequent
interactions will immediately throw an exception, until the agent’s errors are cleared. Agent
errors can be examined with agent-error and the agent restarted with restart-agent.

The actions of all Agents get interleaved amongst threads in a thread pool. At any point in time, at
most one action for each Agent is being executed. Actions dispatched to an agent from another
single agent or thread will occur in the order they were sent, potentially interleaved with actions
dispatched to the same agent from other sources. send should be used for actions that are CPU
limited, while send-off is appropriate for actions that may block on IO.

Agents are integrated with the STM - any dispatches made in a transaction are held until it commuits,
and are discarded if it is retried or aborted. No user-code locking is involved.

Note that use of Agents starts a pool of non-daemon background threads that will prevent
shutdown of the JVM. Use shutdown-agents to terminate these threads and allow shutdown.

58



Challenge 3: Mocking parallel web requests

Insuricorp and Megacorp are integrating their IT systems. As part of this effort you need to modify
the “Corgi cover” eligibility logic to call a remote web service. Your task is to set up the code and
tests.

Part 1: Mock a web request

Every Insuricorp “Corgi cover” policy application needs to be cross referenced with Megacorp to
see if the customer has a Megacorp policy already via a remote web service. The web service is not
available for you to test against yet. Set up a function called fetch-megacorp-policies to do the web
request but leave the implementation empty. Create a test that changes the behavior of fetch-
megacorp-policies to behave as though it were a web request; make it pause for 100ms before
returning the policies that the person has. Set up a test that exercises the eligibility checks using the
mocked version of a web request.

Part 2: Report the how long it takes

In Java you might write something like this:

long startTime = System.nanoTime();
// ... the code being measured ...
long estimatedTime = System.nanoTime() - startTime;

Implement a similar solution in Clojure.

Part 3: Make parallel requests

The web service you are using can handle multiple requests faster than a series of requests. It
operates fastest with up to 20 connections. Modify your code such that multiple requests are made
simultaneously. Compare the timing results to confirm the operations are happening in parallel.

Part 4: Error handling

Modify your mock of fetch-megacorp-policies such that it throws an exception randomly about 10%
of the time. Make sure your tests report a failure. Now update your logic to handle the errors and
retry up to 10 times. The tests should pass. Then create another test where the exception is thrown
100% of the time, and the max tries occurs.

59



Chapter 9. Polymorphism and Types

You need a lot of different types of people to make the world better.

— Joe Louis

9.1. Multimethods

Polymorphic dispatch. First we define the name of the multimethod, and the dispatch function:

(defmulti encounter
(fn dispatch [x y]
[(:species x) (:species y)1))

In this case the dispatch function returns a vector pair of the species of input x and the species of
input y. Now we can provide methods implementing functions to execute for a given dispatch
value:

(defmethod encounter [:bunny :lion] [x y] :run-away)
(defmethod encounter [:1lion :bunny] [x y] :eat)
(defmethod encounter [:1ion :lion] [x y] :fight)
(defmethod encounter [:bunny :bunny] [x y] :mate)

These are somewhere between a case statement and a function definition. They give the conditions
under which to be called, and a function definition. Given a dispatch result of [ :bunny :1lion], the
first method will be called on the x and y inputs, and the method here does nothing but return a
value :run-away. Let’s set up some test inputs:

(def bunny1 {:species :bunny, :other :stuff})
(def bunny2 {:species :bunny, :other :stuff})
(def 1lion1 {:species :lion, :other :stuff})
(def lion2 {:species :lion, :other :stuff})

Now we can call encounter on the data to see what it does...

60



(encounter bunny1 bunny2)

=> :mate

(encounter bunny1 lion1)
=> :run-away

(encounter lion1 bunny1)
=> :eat

(encounter 1lion1 1lion2)
=> :fight

Because keywords are functions, it’s quite common to use a keyword as a dispatch function.

(defmulti draw :shape)

9.2. Protocols

A protocol is a named set of named methods and their signatures, defined using defprotocol:

(defprotocol AProtocol
"A doc string for AProtocol abstraction”
(bar [a b] "bar docs")
(baz [a] [a b] [a b ¢] "baz docs"))

No implementations are provided. Docs can be specified for the protocol and the functions. The
above yields a set of polymorphic functions and a protocol object. All are namespace-qualified by
the namespace enclosing the definition.

The resulting functions dispatch on the type of their first argument, and thus must have at least one
argument. defprotocol is dynamic, and does not require AOT compilation. defprotocol will
automatically generate a corresponding interface, with the same name as the protocol, e.g. given a
protocol my.ns/Protocol, an interface my.ns.Protocol. The interface will have methods
corresponding to the protocol functions, and the protocol will automatically work with instances of
the interface.

Note that you do not need to use this interface with deftype, defrecord, or reify, as they support

protocols directly:

(defprotocol P
(foo [x])
(bar-me [x] [x y1))

61



(deftype Foo [a b c]
P
(foo [x] Q)
(bar-me [x] b)
(bar-me [x y] (+ c y)))

(bar-me (Foo. 1 2 3) 42)

=> 45

(foo
(let [x 42]
(reify P

(foo [this] 17)

(bar-me [this] x)

(bar-me [this y] x))))
=> 17

A Java client looking to participate in the protocol can do so most efficiently by implementing the
protocol-generated interface. External implementations of the protocol (which are needed when
you want a class or type not in your control to participate in the protocol) can be provided using the
extend construct:

(extend AType
AProtocol
{:foo an-existing-fn
:bar (fn [a b] ...)
:baz (fn ([a]...) ([a b] ...)...)}
BProtocol
{...}
o)

extend takes a type/class (or interface, see below), a one or more protocol + function map
(evaluated) pairs. Will extend the polymorphism of the protocol’s methods to call the supplied
functions when an AType is provided as the first argument. Function maps are maps of the
keywordized method names to ordinary fns. This facilitates easy reuse of existing fns and maps, for
code reuse/mixins without derivation or composition.

You can implement a protocol on an interface. This is primarily to facilitate interop with the host
(e.g. Java) but opens the door to incidental multiple inheritance of implementation since a class can
inherit from more than one interface, both of which implement the protocol. If one interface is
derived from the other, the more derived is used, else which one is used is unspecified.

The implementing fn can presume first argument is instanceof AType. You can implement a protocol
on nil. To define a default implementation of protocol (for other than nil) just use Object. Protocols
are fully reified and support reflective capabilities via extends?, extenders, and satisfies?. Note the

62



convenience macros extend-type, and extend-protocol.

If you are providing external definitions inline, these will be more convenient than using extend
directly

(extend-type MyType
Countable
(ent [c] ...)
Foo
(bar [x y] ...)
(baz ([x] ...) ([xy zs] ...)))

Expands into:

(extend MyType
Countable
{:cnt (fn [c] ...)}
Foo
{:baz (fn ([x] ...) (Ix y zs] ...))
sbar (fn [x y] ...)})

9.3. Creating types with defrecord and deftype

deftype, defrecord, and reify provide the mechanism for defining implementations of abstractions,
and instances of those implementations. Resist the urge to use them to define 'structured data' as
you would define classes or structures in other languages. It is preferred to use the built-in
datatypes (vectors, maps, sets) to represent structured data.

9.3.1. Deftype

(deftype Circle [radius])
(deftype Square [length width])

(Circle. 10)
(Square. 5 11)

(->Circle 10)
(->Square 5 11)

9.3.2. Defrecord

This example shows how to implement a Java interface in defrecord.

63



(import java.net.FileNameMap)

To define a record named Thing with a single field a, implement FileNameMap interface and provide
an implementation for the single method: String getContentTypeFor(String fileName).

(defrecord Thing [a]
FileNameMap
(getContentTypeFor [this fileName] (str a "-" fileName)))

Construct an instance of the record:

(def thing (Thing. "foo"))

Check that the instance implements the interface:

(instance? FileNameMap thing)

Call the method on the thing instance and pass "bar":

(.getContentTypeFor thing "bar")

64



Chapter 10. Interacting with a Database

You can have data without information, but you cannot have information
without data.

— Daniel Keys Moran

10.1. Intro to clojure.java.jdbc

Database persistence is important for many applications. We can use clojure.java.jdbc to interact
with a database.

To start, create a new project
$ lein new messenger
and add dependencies to your project.clj file:

[org.clojure/java.jdbc "0.7.5"]
[hsqldb/hsqldb "1.8.0.10"]

Note that we need the driver we plan to use to connect to a database. In this case we are using an in
memory HSQL database.

In the Clojure project we require jdbc, and set up a db connection url.

(ns messenger.core
(:require [clojure.java.jdbc :as jdbc]))

(def db "jdbc:hsqldb:mem:testdb")

Now we are all set to start doing queries.

65



10.2. Inserting, updating and retrieving data

First we will create a table called messages inside the database with a text field named message,
and then insert some rows.

(jdbc/execute! db
"create table messages (message varchar(1024))")

(jdbc/insert-multi! db :messages
[{:message "Hello World"}
{:message "How now?"}])

And we can query the data back:

(jdbc/query db ["select * from messages"])
=> ({:message "Hello World"}
{:message "How now?"})

To selectively delete some data:
(jdbc/delete! db :messages ["message like '%World%'"])
And now there is only one row remaining.

(jdbc/query db ["select * from messages"])
=> ({:message "Hello World"})

Let’s add some more data...

(jdbc/insert-multi! db :messages
[{:message "Nobody panic!!!"}
{:message "What in the world?"}
{:message "All is well."}])

And now we create a function to do a parameterized query.

(defn search [s]
(jdbc/query db
["select * from messages where message like ?" s]))

66



(search "%How%")
=> ({:message "How now?"})

It is important to use parameterized queries instead of string concatenation in this example
because it protects us from SQL injection. Parameters are not part of the query, so they cannot
perform SQL from malicious input.

If you want to redo any steps, remember that you can always drop the table and start again.

(jdbc/execute! db "drop table messages")

10.3. Solutions for SQL management

HoneySQL https://github.com/jkk/honeysql can be used to build SQL statements from data
structures. This is useful when you have to programmatically combine clauses to produce a final
SQL statement. For example if the user can check a checkbox to enable an additional clause in a
search. In such cases it is more convenient to use Clojure’s capabilities for manipulating data
structures. However if you do not need to do such manipulation, I recommend using plain old SQL
queries in their original text form, as you can run them interactively from an SQL prompt much
easier that way.

10.4. Exercises

* Create and populate a table person with two columns; id, name.
* Create and populate a table policy with two columns; id, name
* Create and populate a table person_policy with two columns; person_id, policy_id

* Write a function that given a person name queries all the policies associated with them.
10.5. Answers

(ns messenger.core
(:require [clojure.java.jdbc :as jdbc]))

(def db "jdbc:hsqldb:mem:testdb")

67


https://github.com/jkk/honeysql

68

(jdbc/execute! db
"create table person (id bigint, name varchar(1024))")
(jdbc/execute! db
"create table policy (id bigint, name varchar(1024))")
(jdbc/execute! db
“create table person_policy
(person_id bigint, policy_id bigint)")
(jdbc/insert-multi! db :person
[{:id 1 :name "Sally"}
{:id 2 :name "Billy"}])
(jdbc/insert-multi! db :policy
[{:id 1 :name "Corgi Cover"}
{:id 2 :name "Poodle Protection"}])
(jdbc/insert-multi! db :person_policy
[{:person_id 1 :policy_id 1}
{:person_id 1 :policy_id 2}
{:person_id 2 :policy_id 1}])

(defn find-policies [person-name]
(jdbc/query db ["select a.name

from policy a
inner join person_policy b
on a.id = b.policy_id
inner join person c
on b.person_id = c.id
where c.name = ?"
person-name]))

(find-policies "Sally")

=> ({:name "Corgi Cover"} {:name "Poodle Protection"})
(find-policies "Jane")

=> ()

(find-policies "Billy")

=> ({:name "Corgi Cover"})



Challenge 4: Corgi Cover Database

Sending files around is proving to be problematic. Sometimes applications are lost or the results of
the eligibility check are not communicated back to the customer. You have been tasked with
creating a central source of truth that can be queried as to what applications have been submitted
and processed.

Part 1: Set up the schema

Using the database of your choice, set up an initial database for the Corgi Cover project. In the code,
connect to the database and create the initial table required. You can use whatever schema you like,
but the first requirement is to store the applications with exactly the same data as was retrieved
from the file format in Challenge 2.

Part 2: Populate the data

Modify the code to store the applications as they are processed, and the result of the eligibility
check.

Part 3: Write a spec

Ensure that all records processed from the files meets your expectations for required fields. Write a
spec that explicitly defines what should be in the applications. Validate the spec on the incoming
records.

Part 4: Extending to Poodle Protection

Insuricorp is about to launch a new policy called “Poodle Protection”. Soon they will be processing
applications with completely new rules. Set up a multimethod to handle “Poodle Protection”
applications differently from “Corgi Cover” applications. For now the only difference with the rules
from “Corgi Cover” is that “Poodle Protection” is available in different states: California (CA),
Florida (FL), Wyoming (WY), and Hawaii (HI).

69



Chapter 11. Spec

Much of the essence of building a program is in fact the debugging of the
specification.

— Fred Brooks

11.1. Specifications

The spec library specifies the structure of data, validates or destructures it, and can generate data
based on the spec. Spec was introduced into Clojure 1.9.0, so update your project.clj to the right
version:

[org.clojure/clojure "1.9.0"]
To start working with spec, require the clojure.spec.alpha namespace at the REPL:

(ns my.ns
(:require [clojure.spec.alpha :as s]))

11.2. Validation

Any function that takes a single argument and returns a truthy value is a valid predicate spec.

(s/valid? even? 10)
=> true

70



(s/valid? string? 0)
=> false

Sets are functions, so can be used as predicates that match one or more literal values:

(s/valid? #{:club :diamond :heart :spade} :club)
=> true

Specs are registered using s/def.
(s/def ::suit #{:club :diamond :heart :spade})
A registered spec identifier can be used in place of a spec definition.

(s/valid? ::suit :club)
=> true

The simplest way to compose specs is with and and or. Let’s create a spec that combines several
predicates into a composite spec with s/and:

(s/def ::big-even (s/and int? even? #(> % 1000)))

(s/valid? ::big-even 10)
=> false

(s/valid? ::big-even 100000)
=> true

11.3. Conforming

We can also use s/or to specify two alternatives:
(s/def ::name-or-id (s/or :name string? :id int?))

This or spec is the first case we’ve seen that involves a choice during validity checking. Each choice
is annotated with a tag (here, between :name and :1id) and those tags give the branches names that
can be used to understand or enrich the data returned from conform and other spec functions.

71



(s/conform ::name-or-id "abc")
=> [:name "abc"]

(s/conform ::name-or-id 100)
=> [:id 100]

Many predicates that check an instance’s type do not allow nil as a valid value (string?, number?,
keyword?, etc). To include nil as a valid value, use the provided function nilable to make a spec:

(s/nilable string?)
Explain can be used to report why a value does not conform to a spec.

(s/explain ::big-even 5)
=> val: 5 fails spec: ::big-even predicate: even?

In addition to explain, you can use explain-str to receive the error messages as a string or explain-
data to receive the errors as data.

11.4. Maps

Clojure programs rely heavily on passing around maps of data. Entity maps in spec are defined
with keys:

(def email-regex
#"Na-zA-70-9. %+-]+@[a-zA-20-9.-]+\.[a-zA-Z]1{2,63}%")
(s/def ::email-type (s/and string? #(re-matches email-regex %)))
(s/def ::acctid int?)
(s/def ::first-name string?)
(s/def ::last-name string?)
(s/def ::email ::email-type)

(s/def ::person (s/keys :req [::first-name ::last-name ::email]
:opt [::phone]))

Validation checks that the required attributes are included, and that every registered key has a
conforming value.

72



(s/valid? ::person
{::first-name "Elon"
::last-name "Musk"
::email "elon@example.com"})
=> true

Much existing Clojure code does not use maps with namespaced keys and so keys can also specify
:req-un and :opt-un for required and optional unqualified keys. These variants specify namespaced
keys used to find their specification, but the map only checks for the unqualified version of the
keys.

(s/def :ung/person
(s/keys :req-un [::first-name ::last-name ::email]
:opt-un [::phone]))

(s/valid? :ung/person
{:first-name "Elon"
:last-name "Musk"
:email "elon@example.com"})
=> true

In addition to the support for information maps via keys, spec also provides map-of for maps with
homogenous key and value predicates.

(s/def ::scores (s/map-of string? int?))
(s/valid? ::scores {"Sally" 1000, "Joe" 500})
=> true

Spec has explicit support for pre and post conditions using fdef.

(defn adder [x] #(+ x %))
(s/fdef adder
:args (s/cat :x number?)
:ret (s/fspec :args (s/cat :y number?)
:ret number?)
:fn #(= (-> % :args :x) ((:ret %) 0)))

The :ret spec uses fspec to declare that the returning function takes and returns a number. Even
more interesting, the : fn spec can state a general property that relates the :args (where we know x)
and the result we get from invoking the function returned from adder, namely that adding 0 to it
should return x.

73



11.5. A game of cards

Here’s a bigger set of specs to model a game of cards:

(def suit? #{:club :diamond :heart :spade})
(def rank? (into #{:jack :queen :king :ace} (range 2 11)))
(def deck (for [suit suit? rank rank?] [rank suit]))

(s/def ::card (s/tuple rank? suit?))
(s/def ::hand (s/* ::card))

(s/def ::name string?)
(s/def ::score int?)
(s/def ::player (s/keys :req [::name ::score ::hand]))

(s/def ::players (s/* ::player))
(s/def ::deck (s/* ::card))
(s/def ::game (s/keys :req [::players ::deck]))

(def kenny
{::name "Kenny Rogers"
::score 100
::hand []})
(s/valid? ::player kenny)
=> true

Bad data produces errors

(s/explain ::game
{::deck deck
::players [{::name "Kenny Rogers"
::score 100
::hand [[2 :bananall}]})
=> In: [::players @ ::hand 0 1]
val: :banana fails spec: ::card
at: [::players ::hand 1]
predicate: suit?

If we have a function deal that doles out some cards to the players we can spec that function to
verify the arg and return value are both suitable data values. We can also specify a :fn spec to
verify that the count of cards in the game before the deal equals the count of cards after the deal.

74



(defn total-cards [{:keys [::deck ::players] :as game}]
(apply + (count deck)
(map #(-> % ::hand count) players)))

(defn deal [game] ...)

(s/fdef deal
:args (s/cat :game ::game)
iret ::game
:fn #(= (total-cards (-> % :args :game))
(total-cards (-> % :ret))))

11.6. Generators

A key design constraint of spec is that all specs are also designed to act as generators of sample data
that conforms to the spec (a critical requirement for property-based testing).

Spec generators rely on the Clojure property testing library test.check. However, this dependency is
dynamically loaded and you can use the parts of spec other than gen, exercise, and testing without
declaring test.check as a runtime dependency. When we wish to use these parts of spec (typically
during testing), we need to declare a dev dependency on test.check in our project.clj:

:profiles {:dev {:dependencies [[org.clojure/test.check "0.9.0"]]}}

The dev profile dependencies are included during testing but not published as a dependency or
included in uber jars.

We require clojure.spec.gen.alphain the ns form:

(ns my-ns.my-test
(:require [clojure.spec.gen.alpha :as gen]))

The gen function can be used to obtain the generator for any spec.

Once you have obtained a generator with gen, there are several ways to use it. You can generate a
single sample value with generate or a series of samples with sample. Let’s see some basic
examples:

(gen/generate (s/gen int?))
=> -959

75



(gen/sample (s/gen string?))
:> (ll n nn o omwwonon Il8ll "w" nn |IG74SmCmII IlKgSLgll "82VCII)

(gen/sample (s/gen #{:club :diamond :heart :spade}))
=> (:heart :diamond :heart :heart :heart :diamond :spade :spade :spade :club)

What about generating a random player in our card game?

(gen/generate (s/gen ::player))
=> {:spec.examples.quide/name "sAt8rbt",
:spec.examples.qguide/score 233843,
:spec.examples.qguide/hand ([8 :spade] [5 :heart] [9 :club] [3 :heart])}

We can even generate an entire game:
(gen/generate (s/gen ::game))

It’s useful to spec (and generate) values in a range. For example, in the case of a range of integer
values, use int-in to spec a range:

(s/def ::roll (s/int-in @ 11))
(gen/sample (s/gen ::roll))
=> (1003171015 80)

Spec also includes inst-in for a range of Dates, and double-in for double ranges.

To learn more about generators, read the test.check tutorial https://clojure.github.io/test.check/
intro.html.

11.7. Instrumentation and Testing

Spec provides a set of development and testing functionality in the clojure.spec.test.alpha
namespace, which we can include with:

(ns my-ns.core
(:require [clojure.spec.test.alpha :as stest]))

Instrumentation validates that the :args spec is being invoked on instrumented functions and thus
provides validation for external uses of a function.

76


https://clojure.github.io/test.check/intro.html
https://clojure.github.io/test.check/intro.html

(defn ranged-rand
"Returns random int in range start <= rand < end"
[start end]
(+ start (long (rand (- end start)))))

(stest/instrument ‘ranged-rand)

Instrument takes a fully-qualified symbol so we use * here to resolve it in the context of the current
namespace. If the function is invoked with args that do not conform with the :args spec you will see
an error like this:

(ranged-rand 8 5)
=> CompilerException clojure.lang.ExceptionInfo: Call to #'spec.examples.quide/ranged-
rand did not conform to spec

Instrumentation can be turned off using the complementary function unstrument. Instrumentation
is useful at both development time and during testing to discover errors in calling code. It is not
recommended to use instrumentation in production due to the overhead involved with checking
args specs.

We mentioned earlier that clojure.spec.test.alpha provides tools for automatically testing
functions. When functions have specs, we can use check, to automatically generate tests that check
the function using the specs.

check will generate arguments based on the :args spec for a function, invoke the function, and
check that the :ret and : fn specs were satisfied.

(ns my-ns.core
(:require [clojure.spec.test.alpha :as stest]))

(stest/check ‘ranged-rand)
=> ({:spec #object[clojure.spec.alpha$fspec_impl ...],
:clojure.spec.test.check/ret {:result true, :num-tests 1000, :seed
1466805740290},
:sym spec.examples.guide/ranged-rand,
iresult true})

A keen observer will notice that ranged-rand contains a subtle bug. If the difference between start
and end is very large (larger than is representable by Long/MAX_VALUE), then ranged-rand will
produce an IntegerOverflowException. If you run check several times you will eventually cause this
case to occur.

check also takes a number of options that can be passed to test.check to influence the test run, as
well as the option to override generators for parts of the spec, by either name or path.

77



Imagine instead that we made an error in the ranged-rand code and swapped start and end:

(defn ranged-rand

BROKEN! "Returns random int in range start < rand < end" [start end] (+ start (long (rand (- start

end)))))
This broken function will still create random integers, just not in the expected range. Our :fn spec

will detect the problem when checking the var:

(stest/abbrev-result (first (stest/check ‘ranged-rand)))
= ({...
iresult {...
:clojure.spec.alpha/failure :test-failed}}

check has reported an error in the : fn spec. We can see the arguments passed were -3 and 0 and the
return value was -5, which is out of the expected range.

To test all of the spec’ed functions in a namespace (or multiple namespaces), use enumerate-
namespace to generate the set of symbols naming vars in the namespace:

(-> (stest/enumerate-namespace 'user) stest/check)

And you can check all of the spec’ed functions by calling stest/check without any arguments.

While both instrument (for enabling :args checking) and check (for generating tests of a function)
are useful tools, they can be combined to provide even deeper levels of test coverage.

instrument takes a number of options for changing the behavior of instrumented functions,
including support for swapping in alternate (narrower) specs, stubbing functions (by using the :ret
spec to generate results), or replacing functions with an alternate implementation.

Consider the case where we have a low-level function that invokes a remote service and a higher-
level function that calls it.

(defn invoke-service [service request])

(defn run-query [service query]
(let [{::keys [result error]} (invoke-service service
{::query query})]
(or result error)))

We can spec these functions using the following specs:

78



(s/def ::query string?)

(s/def ::request (s/keys :req [::query]))

(s/def ::result (s/coll-of string? :gen-max 3))

(s/def ::error int?)

(s/def ::response (s/or :ok (s/keys :req [::result])
rerr (s/keys :req [::error])))

(s/fdef invoke-service
:args (s/cat :service any? :request ::request)
:ret ::response)

(s/fdef run-query
:args (s/cat :service any? :query string?)
iret (s/or :ok ::result :err ::error))

And then we want to test the behavior of run-query while stubbing out invoke-service with
instrument so that the remote service is not invoked:

(stest/instrument ‘invoke-service {:stub #{'invoke-service}})
=> [spec.examples.quide/invoke-service]

(invoke-service nil {::query "test"})
=> H:spec.examples.quide{:error -11}

(invoke-service nil {::query "test"})
=> #:spec.examples.quide{:result ["kq@H4yv@8plL14QkVH8"
"inb6gH64gI0ARefv3k9Z5Fi23720gc" 1}

(stest/summarize-results (stest/check ‘run-query))
=> {:total 1, :check-passed 1}

The first call here instruments and stubs invoke-service. The second and third calls demonstrate
that calls to invoke-service now return generated results (rather than hitting a service). Finally, we
can use check on the higher level function to test that it behaves properly based on the generated
stub results returned from invoke-service.

There is even more to spec! Once you are comfortable with the basics you can learn more at
https://clojure.org/guides/spec.

79


https://clojure.org/guides/spec

Chapter 12. Macros

I never think about myself as an artist working in this time. I think about it
in macro.

— Frank Ocean

Macros manipulate the operand forms instead of evaluating them as input arguments. They are not
functions, and cannot be used as values or arguments to functions. We already used a macro; defn
is a macro for conveniently defining functions.

(defn square [x] (* x x))
Actually expands to a def and fn form:
(def square (fn [x] (* x x)))

The difference between macros and functions is that macro arguments are manipulated at compile
time instead of evaluated. Macros allow the user to extend the syntax of Clojure, but macros are
less useful than functions as they cannot be used as values or arguments to higher order functions.

12.1. Expanding macros

Macros provide syntactic sugar. Macros first expand to produce new code that then gets compiled.
The form is expanded at compile time through manipulation of the form. You can examine the
expansion using macroexpand-1:

(macroexpand-1 '(defn square [x] (* x x)))
=> (def my-namespace/square
(clojure.core/fn
([my-namespace/x]
(clojure.core/* my-namespace/x my-namespace/x))))

80



12.2. Defining macros

Consider two different definitions of zen:

(defmacro zenl1 [x]
(println "x:" x) x)

and

(defn zen2 [x]

(println "x:" x) x)
Now call

(zen1 (+ 1 2))
= x:(+12)
3

(zen2 (+ 1 2))
=> x:3
3

The final result is the same, but notice that the input to zen1 was a list, where as the input to zen2
was the result of evaluating the list. That’s the key difference between a macro and a function.

Macros themselves are really just functions with a :macro flag set in their metadata, which causes
them to be passed in the input forms unevaluated, and caused the result to be evaluated. This last
part is less obvious... but think back to zen1... x was a list, we returned x, but the final result wasn’t
a list... it was 3. The list was evaluated as a function call to +, resulting in 3.

12.3. Syntax quoting

To help write macros there is a special quoting form called syntax-quote.

Back-quote (‘) Unquote (~) and Unquote-splicing (~@)

"(12 ~(+12) ~@(map inc [3 4 5]))
=> (12345%6)

All symbols in a syntax-quote form get fully qualified.

81



‘(inc 1)
=> (clojure.core/inc 1)

Fully qualified symbols is desirable when creating macros, otherwise symbols may have another
meaning in the context that the macro is expanded in:

(defmacro m1 []
"(inc 1))

(defmacro m2 []
‘(inc 1))

(let [inc dec]
{:m1 (m1)

m2 (m2)})
= {:m1 0, :m2 2}

Within the let block, the symbol inc has a different meaning than normal. Because m2 uses syntax
quote, inc gets fully qualified to clojure.core/inc which does not collide with the let binding.
Fully qualified symbols avoids one source of collisions, but there is another:

(defmacro bad [expr]

(list "let '[a 1]
(list "inc expr)))

(bad 0)
=> 1

(def a 0)
(bad a)
= 2

This might seem confusing, unless you notice that:

(macroexpand-1 "(bad a))
=> (let [a 1] (inc a))

Instead of inc operating on the input parameter, it is operating on an internal let bound value. To
avoid this situation Clojure provides a let gensyms form which will produce a randomly named
binding:

82



(defmacro good [expr]
“(let [a# 1]
(inc ~expr)))

(good a)
=> 1

(good 0)
=> 1

(macroexpand-1 '(good a))
=> (clojure.core/let [a__6500__auto__ 1] (clojure.core/inc a))

The let binding a# expands out to a randomly generated symbol unlikely to collide with existing
symbols.

12.4. Code as data

You may have noticed when we write a macro, we are really writing a function that produces code.
The output is code... as data, and we manipulate code... as data. Homoiconic means that the
language text has the same structure as its abstract syntax tree (AST). This allows all code in the
language to be accessed and transformed as data, using the same representation. Nested code is
well represented as a data structure.

When working on a non-trivial macro a good strategy is:

 Step 1: Write a function!

* Step 2: Call your function from the macro.

Stated another way; keep the macro as small as possible, and offload transformations to functions.

12.5. Exercises

Create the following macros and test cases:

* Create a macro called ignore which accepts any number of expressions, does absolutely
nothing, and always returns nil.

(ignore (println "hello???") (inc 42))

* Define your own version of the when macro. When is like if, but only has one branch and
allows multiple statements.

83



(when2 (pos? x)
(println "Positive:" x)
(inc x))

* Write a spy macro. Spy wraps an expression and prints out its value.

(* (spy (+12))3)
=> Expression (+ 1 2) has value 3
9

» Write your own version of the or macro

(or2 (pos? 1) (println "does not execute"))

12.6. Answers

(defmacro ignore [expr] nil)

(defmacro when2 [test & body]
(list '"if test (cons 'do body))

(defmacro spy [expr]
‘(let [result# ~expr]
(println "Expression" '~expr "has value" result#)
result#))
(macroexpand-1 "(spy (* 2 3)))
=> (clojure.core/let [result__6418__auto__ (* 2 3)]
(clojure.core/println
"Expression” (quote (* 2 3))
"has value" result_ 6418 _auto_ )
result 6418 auto )
(+ 1 (spy (* 2 3)))
=> Expression (* 2 3) has value 6
7

(defmacro or2
([1 nil)
([x] x)
([x & next]
‘(let [or#t ~x]
(if or# or# (or ~@next)))))

84



Chapter 13. Further reading

You can never get a cup of tea large enough or a book long enough to suit
me.

— C.S. Lewis

Writing Clojure code requires more thinking and less typing than other languages. Don’t feel
frustrated if the code comes slowly at first. Being a great programmer requires thinking. You will
only reach your true potential expressing code in ways that empower you rather than constrain
you.

Further exercises: https://www.4clojure.com
Clojure for Java Programmers - Rich Hickey

 Part 1: https://www.youtube.com/watch?v=P76Vhsk_3]J0

 Part 2: https://www.youtube.com/watch?v=hb3rurFxrZ8

85


https://www.4clojure.com
https://www.youtube.com/watch?v=P76Vbsk_3J0
https://www.youtube.com/watch?v=hb3rurFxrZ8

	Enterprise Clojure Training
	Table of Contents
	About
	Overview
	Duration
	Learning Objectives
	Prerequisites
	Target Audience
	Required setup
	Pre-assessment
	Required preparation
	Optional reading
	Introductions
	The instructor
	Clojure
	Syntax Summary


	Chapter 1. The Clojure Ecosystem
	1.1. Leiningen
	1.2. The Read Eval Print Loop (REPL)
	1.3. Editor setup
	1.4. Exercises
	1.5. Answers

	Chapter 2. Clojure Syntax
	2.1. Primitive data types
	2.2. Collections: lists, vectors, maps, and sets
	2.3. Invoking functions
	2.4. Defining vars
	2.5. Binding names with let
	2.6. Destructuring (also known as binding forms)
	2.7. Namespaces
	2.8. Regex
	2.9. Exercises
	2.10. Answers

	Chapter 3. Functions
	3.1. Defining functions
	3.2. Pre- and post-conditions
	3.3. Anonymous functions
	3.4. Function literals
	3.5. Keyword and variadic arguments
	3.6. Exercises
	3.7. Answers

	Challenge 1: Corgi Cover eligibility
	Part 1: eligibility
	Part 2: silver, gold and platinum
	Part 3: accept a map as an argument
	Part 4: cross-reference policies

	Chapter 4. Testing with clojure.test
	4.1. Defining tests with deftest
	4.2. lein-test-refresh
	4.3. Assert with is
	4.4. Test fixtures
	4.5. Using with-redefs for mocking behavior
	4.6. Debugging
	4.7. Workflow
	4.8. Exercises
	4.9. Answers

	Chapter 5. Control Flow
	5.1. Conditionals: if, when, cond
	5.2. Recursion
	5.3. Loops
	5.4. Exception handling
	5.5. Comments
	5.6. Exercises
	5.7. Answers

	Chapter 6. Functional Programming
	6.1. Pure functions and side effects
	6.2. Apply and partial
	6.3. Functions on sequences: map, reduce, and friends
	6.4. Threading operators
	6.5. Data structures are functions!
	6.6. Exercises
	6.7. Answers

	Challenge 2: Processing files
	Part 1: read a file
	Part 2: create files
	Part 3: validating with reasons
	Part 4: working with file formats

	Chapter 7. Java Interop
	7.1. Clojure syntax for Java constructors
	7.2. Calling methods
	7.3. reify
	7.4. gen-class and proxy
	7.5. Including Java classes in Clojure projects

	Chapter 8. Parallel Programming and Concurrency
	8.1. Vars and dynamic scope
	8.2. Delays, Futures, and Promises
	8.2.1. Delays
	8.2.2. Futures
	8.2.3. Promises

	8.3. Atoms, Refs, and Agents

	Challenge 3: Mocking parallel web requests
	Part 1: Mock a web request
	Part 2: Report the how long it takes
	Part 3: Make parallel requests
	Part 4: Error handling

	Chapter 9. Polymorphism and Types
	9.1. Multimethods
	9.2. Protocols
	9.3. Creating types with defrecord and deftype
	9.3.1. Deftype
	9.3.2. Defrecord


	Chapter 10. Interacting with a Database
	10.1. Intro to clojure.java.jdbc
	10.2. Inserting, updating and retrieving data
	10.3. Solutions for SQL management
	10.4. Exercises
	10.5. Answers

	Challenge 4: Corgi Cover Database
	Part 1: Set up the schema
	Part 2: Populate the data
	Part 3: Write a spec
	Part 4: Extending to Poodle Protection

	Chapter 11. Spec
	11.1. Specifications
	11.2. Validation
	11.3. Conforming
	11.4. Maps
	11.5. A game of cards
	11.6. Generators
	11.7. Instrumentation and Testing

	Chapter 12. Macros
	12.1. Expanding macros
	12.2. Defining macros
	12.3. Syntax quoting
	12.4. Code as data
	12.5. Exercises
	12.6. Answers

	Chapter 13. Further reading

